	9971	0
U	3271	

Pages: 2)

Name	• • • • • • • • • • • • • • • • • • • •	*********

Reg. No.....

FIRST SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2022

Mathematics

MTH1C01-ALGEBRA-I

(2019 Admission onwards)

Time: Three Hours

Maximum Weightage: 30

Part A

Answer all questions.

Each question carries a weightage 1.

- 1. Do the rotatioins, together with the identity map, form a subgroup of the group of plane isometries? Why or why not?
- 2. Find the order of (3, 6, 12, 16) in $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{20} \times \mathbb{Z}_{24}$.
- 3. Find the order of the factor group $(\mathbb{Z}_{12} \times \mathbb{Z}_{18})/\langle (4,3) \rangle$.
- 4. In the group \mathbb{Z}_{36} with $H=\langle 6\rangle$ and $N=\langle 9\rangle$. List the elements in HN. List the cosets in HN/N, showing the elements in each coset.
- 5. Show that no group of order 36 is simple.
- 6. How many different homomorphisms are there of a free group of rank 2 onto \mathbb{Z}_4 ?
- 7. Give a presentation of \mathbb{Z}_4 involving one generator, involving two generators; involving three generators.
- 8. The polynomial $x^4 + 4$ can be factored into linear factors $\mathbb{Z}_5[x]$. Find this factorization. (8 x 1 = 8 weightage)

Part B

Answer any six questions choosing two from each unit.

Each question carries a weightage 2.

Unit 1

- 9. If m divides the order of a finite abelian group G, then show that G has a subgroup of order m.
- 10. Let H be a normal subgroup of G. Show that the cosets of H form a group G/H under the binary operation (aH)(bH) = (ab)H.

Turn over

2

D 32716

Let X be a G-set and let $x \in X$. Then $|Gx| = (G : G_x)$. If |G| is finite, then show that |Gx| is a divisor of |G|.

Unit 2

- Let H be a subgroup of G and let N be a normal subgroup of G. Prove that $(HN)/N = H/(H \cap N)$.
- 13. Let P₁ and P₂ be Sylow p-subgroups of a finite group G. Prove that P₁ and P₂ are conjugate subgroups of G.
- 14. For a prime number p, prove that every group G of order p^2 is abelian.

Unit 3

- 15. Compute the evaluation homormorphism $\phi_5[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$, $F=E=\mathbb{Z}_7$.
- 16. Let $f(x) \in F[x]$, and let f(x) be of degree 2 or 3. Prove that f(x) is reducible over F if and only if it has a zero in F.
- 17. Let $G = \{e, a, b\}$ be a cyclic group of order 3 with identity element e. Write the element $(3e+3a+3b)^4$ in the group algebra \mathbb{Z}_5G in the form re+sa+tb for $r, s, t \in \mathbb{Z}_5$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two questions.

Each question carries a weightage 5.

- 18. (à) Prove that a factor group of a cyclic group is cyclic.
 - (b) Let G be a group. The set of all commutators aba⁻¹b⁻¹ for a,b∈G generates a subgroup C (the commutator subgroup) of G. Show that the subgroup C is a normal subgroup of G, if N is a normal subgroup of G, then show that G/N is abelian if and only if C ≤ N.
- 19. (a) Prove that M is a maximal normal subgroup of G if and only if G/M is simple.
 - (b) Let G be the additive group of real numbers. Let the action of $\theta \in G$ on the real plane \mathbb{R}^2 be given by rotating the plane counterclockwise about the origin through θ radians. Let P be a point other than the origin in the plane. Show \mathbb{R}^2 is a G-set. Describe geometrically the orbit containing P. Find the group G_P .
- 20. (a) State and prove First Sylow Theorem.
 - (b) Prove that the center of a finite nontrivial p-group G is nontrivial.
- 21. (a) State and prove Division Algorithm for F[x].
 - (b) Demonstrate that $x^3 + 3x^2 8$ is irreducible over \mathbb{Q} .

 $(2 \times 5 = 10 \text{ weightage})$