(Pages: 3)

Nar	ae	••••••

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

[November 2020 session for SDE/Private Students]

(CBCSS)

Mathematics

MTH 1C 04—DISCRETE MATHEMATICS

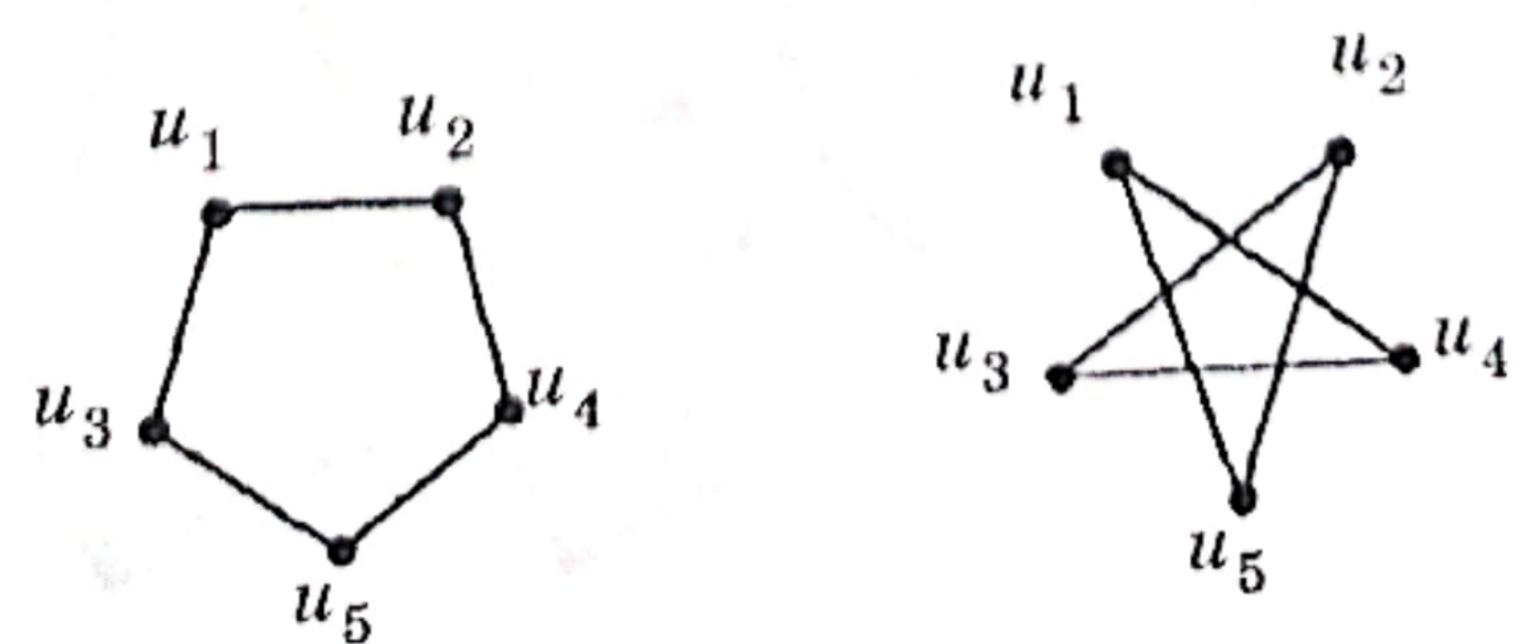
(2019 Admission onwards)

(Covid instructions are not applicable for PVT/SDE students (November 2020 session))

Time: Three Hours

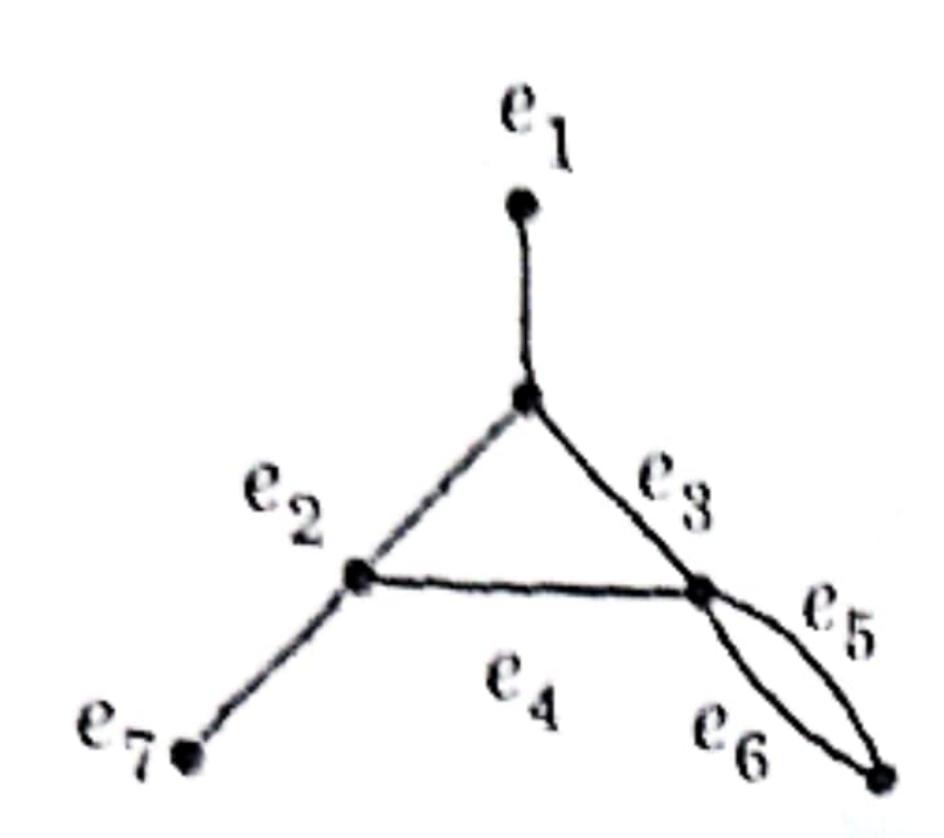
Maximum: 30 Weightage

General Instructions


- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- The instruction if any, to attend a minimum number of questions from each sub section / sub part / sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.


Each question carries weightage 1.

- 1. Define partial ordering and give an example.
- 2. What is a chain? Give an example.
- 3. Find the maximal elements of the poset $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ under the partial order $a \mid b$ if a divides b.
- 4. Define an isomorphism between the following graphs:

Turn over

Scanned with OKEN Scanner

- 6. If G is a simple planar graph with at least 3 vertices, prove that $m \le 3n 6$, where $m_{\text{add}_{i_a}}$ number of edges and vertices of G, respectively.
- 7. Let $w = a_1 a_2 ... a_n$ be a string. Find length of w and reverse of w.
 - Define star-closure of a language.

 $(8 \times 1 = 8)$

Part B

Answer any **six** questions by choosing **two** questions from each unit. Each question carries a weightage of 2.

UNIT I

- 9. Let (X, ≤) be a poset and A a non-empty finite subset of X. Prove that A has at least me =
- 10. Let X be a set and let \leq be a binary relation defined on X which is reflexive and transfer a binary relation on X by xRy if $x \le y$ and $y \le x$. Prove that R is an equivalence relation
- 11. Let m be the largest possible number of mutually incomparable elements in a poset 1X cannot be expressed as a union of less than m chains.

UNIT II

- In any graph G, prove that the number of vertices of odd degree is even.
- Prove that a vertex v of a connected graph G with at least three vertices is a cut vertex vonly if there exist vertices u and w of G distinct from v such that v is in every u^{-u}
- Prove that a simple graph is a tree if and only if every pair of vertices is connected by path.

D 13146

- 15. Find a grammar that generates the language $L = \{a^nb^{n+1} : n \ge 0\}$.
- Distinguish between deterministic automata and non-deterministic automata. 17. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite accepter and let G_M be its associate transition graph. Then prove that for every $q_i, q_j \in \mathbb{Q}$ and $w \in \Sigma^*, \delta^*(q_i, w) = q_j$ if and only if there is in

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries a weightage of 5.

- Let A be a chain in a poset X and |A| denotes the length of A. If X = P(B) where B is a set with n elements and the partial order on X is by set inclusion, prove that
 - (i) For S, $T \in X$, T covers S iff $S \subset T$ and T S is singleton set.
 - The longest chain in X is of length n + 1. (11)
 - The number of such chains is n! (111)
- Prove that a connected graph G with at least two vertices contains at least two vertices that are not cut vertices.
 - Prove that a simple cubic connected graph G has a cut vertex if and only if it has a cut edge.
- A graph G is planar if and only if each of its blocks is planar.
 - Define dual of a planar graph. Draw a planar representation of K, and its dual.
- Find a d.f.a. that:
 - Recognizes the set of all strings on $\Sigma = \{a, b\}$ starting with prefix ab.
 - Accepts all strings on {0,1} except those containing the substring 001.

 $(2 \times 5 = 10 \text{ weightage})$

Scanned with OKEN Scanne