(Pages	:	2)
--------	---	----

Name			
Reg.	No		

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Mathematics

MTH 1C 01—ALGEBRA I

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Verify whether $\phi(x,y) = (x+1,y)$ is an isometry of the plane.
- 2. Find a generator of the cyclic group $\mathbb{Z}_2 \times \mathbb{Z}_3$.
- 3. Describe all abelian groups of order 20 upto isomorphism.
- 4. Find all subgroups of the quotient group $\mathbb{Z}/6\mathbb{Z}$.
- 5. Let G be a group of order 18. Find the number of 3-Sylow subgroups of G.
- 6. Give all elements of the group given by the presentation $(a:a^5=1)$.
- 7. Find the inverse of 2i + j + k in the ring of quaternions.
- 8. Let $\phi: \mathbb{Z} \times \to \mathbb{Z} \times \mathbb{Z}$ be the homomorphism defined by $(x, y) \mapsto (x, 0)$. Find ker ϕ .

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any six questions, choosing two from each unit.

Earth question has weightage 2.

Unit 1

- 9. Verify whether $\mathbb{Z}_5 \times \mathbb{Z}_6$ is a cyclic group.
- 10. Show that $\mathbb{Z}/5\mathbb{Z}$ is isomorphic to \mathbb{Z}_5 .
- 11. Verify whether \mathbb{Z}_6 is simple.

Turn over

Scanned with OKEN Scanner

Unit 2

- 12. Show that (1 2 3) and (1 3 2) are conjugates in the symmetric group S_{3} .
- 13. Verify whether the following series of groups are isomorphic:
 - $0 < (5) < \mathbb{Z}_{15}$ and $0 < (3) < \mathbb{Z}_{15}$.
- 14. Show that every group of order 15 is cyclic.

Unit 3

- 15. Show that the ring of all endomorphisms of the group $\mathbb Z$ of integers is commutative.
- 16. Let $\phi_2: \mathbb{Q}[x] \to \mathbb{Q}$ be the evaluation homomorphism with $\phi_2(x) = 2$. Find the kernal of ϕ_2 .
- 17. Verify whether $x^3 + 3x + 2 \in \mathbb{Z}_5[x]$ is irreducible.

 $(6 \times 2 = 12 \text{ weightage})$

Scanned with OKEN Scanner

Part C

Answer any **two** questions. Each question has weightage 5.

- 18. (a) Let G be a group and H be a normal subgroup of G.
 - i. Show that the coset multiplication (aH)(bH) = (ab) H is well defined.
 - ii. Verify that G/H is a group.
 - (b) Describe the factor group \mathbb{Z}_{20}/H where H is the subgroup generated by 5.
- 19. (a) Let H, K be groups and $G = H \times K$. Show that:
 - i. $\overline{H} = \{(h,e) : h \in H\}$ is a normal subgroup of G where is the identity of K.
 - ii. G/H is isomorphic to K.
 - (b) Show that factor groups of cyclic groups are cyclic.
- 20. Let G be a group and N be a normal subgroup of G and H be any subgroup of G. Show that:
 - (a) HN = NH.
 - (b) H N is a subgroup of G.
 - (c) $H \cap N$ is a normal subgroup of G.
 - (d) HN/N is isomorphic to $H/(H\cap N)$.
- 21. (a) Let F be a field and $f(x) \in F[x]$. Show that $a \in F$ is a zero of f(x) if and only if (x a) is a factor of f(x).
 - (b) Prove that a polynomial of degree 3 in F [x] is irreducible if and only if it has no zero in F. $(2 \times 5 = 10 \text{ weightage})$