-			
C	00	0	4
	6	.,	1 1
			-

(Pages: 4)

Reg. No.....

SIXTH SEMESTER B.A. DEGREE EXAMINATION, MARCH 2019

(CUCBCSS)

Economics

ECO 6B 12-MATHEMATICAL ECONOMICS

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries ½ mark.

1. A linear function is in the form:

(a) y = a + bx.

(b) $y = a + bx + cx^2$.

(c) $y = ax^n$.

(d) $y = a^x$.

2. For the consumption function, C = 100 + 0.8y, MPC is:

(a) 100.

(b) 0.8y.

(c) 0.8.

(d) None of the above.

3. If the total revenue function is given as, $R = 2x^2 - 10x$, MR is:

(a) $x^2 - 5$.

(b) 4x.

(c) 4x - 10.

(d) $2x^3 - 10x^2$.

4. If change in price, either rise or fall, is followed by a fall in total outlay, the Elasticity of demand is said to be:

(a) Less than unity.

(b) Greater than unity.

(c) 1.

(d) 0.

5. For the demand function, D = 100 - 2P, price elasticity is:

(a) $\frac{-2P}{100-2P}$

(b) -2P.

(c) -2.

 $(d) \quad \frac{100-2P}{2P}$

Turn over

6. The sufficient condition for maximum is:

	(\mathbf{a})	f''(x) > 0.	(b)	f'(x) > 0.			
	(c)	f'(x)=0.	(d)	f''(x) < 0.			
7. Marginal utility for the utility function $U = 20x^4 + 7x^3 + 13x^2 + 12x + 9$ is:				$4 + 7x^3 + 13x^2 + 12x + 9$ is:			
	(a)	$80x^3 - 7x^2 - 13x.$	(b)	$80x^3 + 21x^2 + 26x + 12.$			
	(c)	$80x^3 + 12$.	(d)	$80x^3 + 21x^2 + 13x.$			
8.	8. In order to maximize profit, a firm must choose the output level such that its:						
	(a)	MR < MC.	(b)	MR > MC.			
	(c)	MR = MC.	(d)	$MR \neq MC$.			
9.		If the production function is a linear homogeneous production function then the elasticity of substitution between capital and labour is:					
	(a)	0.	(b)	Greater than one.			
	(c)	Less than one.	(d)	Equal to one.			
10.	D. Linear Programming as an economic tool was first developed and applied by :						
	(a)	Prof. Danzig.	(b)	Von Neumann.			
	(c)	Morgenstern.	(d)	Prof. W.W. Leontif.			
11.	1. The quantity of the supply of a product at a given price depends upon the nature of its:						
	(a)	AC curve.	(b)	MC curve.			
	(c)	MR curve.	(d)	AR curve.			
12. Input-Output analysis assumes :							
	(a)	Increasing returns to scale.	(b)	Diminishing returns to scale.			
	(c)	Constant returns to scale.	(d)	None of the above.			
				$(12 \times \frac{1}{2} = 6 \text{ marks})$			
	1			*1.			

Part B (Very Short Answer Questions)

Answer any **ten** questions. Each question carries 2 marks.

- 13. Distinguish between Leontief open and closed input-output model.
- 14. What is a linear homogeneous function?
- 15. What is optimal solution?
- 16. Define cross elasticity of demand.
- 17. Define production possibility curve.
- 18. For the total utility function $U = 20x^4 + 7x^3 + 13x^2 + 12x + 9$, compute marginal utility.
- 19. What is an economic model?
- 20. Define Marginal propensity to consume.
- 21. If the price of a commodity is Rs. 5 and MR is Rs. 10, find the elasticity of demand.
- 22. Define market equilibrium.
- 23. What is an isoquant?
- 24. Compute Average cost for the Total cost $C = 8x^3 + 3x^2 6x + 3$.

 $(10 \times 2 = 20 \text{ marks})$

Part C (Short Essay Questions)

Answer any **six** questions.

Each question carries 5 marks.

- 25. What is meant by input-output analysis? What are the various uses of input-output analysis?
- 26. Explain the concepts of maxima and minima of functions. How are they estimated?
- 27. Discuss the conditions for profit maximization under monopoly.
- 28. For a firm under perfect competition, it is given that p = 3 and $c = 100 + .015x^2$. Find how many items are produced to maximize the profit. What is the profit?
- 29. Determine Marginal Utilities of x and y at x = 3 and y = 2 for the Total Utility Function $U = 5x^2 y + 2xy^3 + 3x + 9y.$

Turn over

- 30. What are the applications of Linear Programming methods?
- 31. Calculate marginal productivity of labour and capital from the following production functions

 (i) $X = L^2 + 2L + 10$; (ii) $X = K^2 + 3K^3$.
- 32. Write a note on indifference curve. What are the properties of indifference curve?

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Questions)

Answer any **two** questions. Each question carries 12 marks.

33. Solve the following LPP graphically:

Maximize
$$Z = 2x_1 + 3x_2$$

subject to $x_1 + x_2 \le 1$
 $3x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$.

- 34. Given the utility function U = f(x, y), the prices are p_1 = Rs. 5 and p_2 = Rs. 5 and consumer's income for the period is Rs. 50. Find out the consumer's equilibrium level of consumption of commodity x and y. Also prove the conditions for maximization.
- 35. Given the following Revenue (R) and Cost (C) functions for a firm $R = 20q q^2$ and $C = q^2 + 8q + 2$, find the equilibrium level of output, price, total revenue, total cost and profit.
- 36. Given the Demand and the Average Cost Functions of a monopolistic firm as P = 32 3q, $AC = q + 8 + \frac{5}{q}$, what level of output maximizes total profit and what are the corresponding values of R, AR, MR, C, AC, MC and Profit?

 $(2 \times 12 = 24 \text{ marks})$