M103 F.M

(Pages: 4)

Name.....

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(CUCBCSS—UG)

Mathematics

MAT 5B 07—BASIC MATHEMATICAL ANALYSIS

Time: Three Hours

Maximum: 120 Marks

Section A

Answer all questions.

Each question carries 1 mark.

- 1. Find $f \circ g$ for the functions $f, g : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 2x, g(x) = 3x^2 1$.
- 2. Is there exists a bijection between N and a proper subset of itself? Justify.
- 3. State the principle of Strong Induction.
- 4. If $a \in \mathbb{R}$ satisfies $a \cdot a = a$, prove that either a = 0 or a = 1.
- 5. Define absolute value of a real number.
- 6. Find sup $\left\{1 \frac{1}{n} : n \in \mathbb{N}\right\}$.
- 7. Prove that $\lim_{n \to \infty} \frac{1}{n} = 0$.
- 8. Give an example of two divergent sequences X and Y such that their sum X + Y converges.
- 9. Give an example of an unbounded sequence that has a convergent subsequence.
- 10. Define an open subset of \mathbb{R} .
- 11. Find Re z and Im z for $z = \frac{2+i}{(1+i)(1-2i)}$.
- 12. Show that $\operatorname{Re}(iz) = -\operatorname{Im} z$.

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Section B

Answer at least eight questions.

Each question carries 6 marks.

All questions can be attended.

Overall Ceiling 48.

- 13. Let $f: A \to B$ be a function and let $G, H \subset B$. Prove that $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$.
- 14. Prove that if $c \ge 0$, then $|a| \le c$ if and only if $-c \le a \le c$; $a, b, c \in \mathbb{R}$.
- 15. Prove that set $\mathbb{N} \times \mathbb{N}$ is denumerable.
- 16. Prove that a sequence of real numbers can have at most one limit.
- 17. Prove that every convergent sequence of real numbers is bounded.
- 18. Prove that the sequence (n) is divergent.
- 19. Prove that $\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} \right) = 0$.
- 20. Prove that every convergent sequence of real numbers is a Cauchy sequence.
- 21. Prove or disprove : The arbitrary intersection of open sets in $\mathbb R$ is open.
- 22. Show that if G is an open set and F is a closed set, then G|F is an open set and F|G is a closed set.
- 23. Show that $\left| e^{i\theta} \right| = 1$.
- 24. Prove that z is real if and only if $\overline{z} = z$.
- 25. Sketch the given set and determine whether it is a domain : |2z+3|>4.
- 26. Define accumulation point of a set. Determine the accumulation points, if any, for the set $z_n = i^n$; n = 1, 2, 3, ...

 $(8 \times 6 = 48 \text{ marks})$

Section C

Answer at least **five** questions. Each question carries 9 marks. All questions can be attended. Overall Ceiling 45.

- 27. If $I_n = [a_n, b_n]$; $n \in \mathbb{N}$ is a nested sequence of closed bounded intervals, prove that there exists a real number ξ such that $\xi \in I_n$ for all $n \in \mathbb{N}$.
- 28. Prove that the set \mathbb{R} of real numbers is not countable.
- 29. State and prove Monotone Convergence Theorem.
- 30. State and prove Bolzano-Weierstrass Theorem.
- 31. Let (x_n) and (y_n) be sequences of real numbers such that $x_n \leq y_n \ \forall n \in \mathbb{N}$. Prove that :
 - (a) If $\lim (x_n) = +\infty$, then $\lim (y_n) = +\infty$.
 - (b) If $\lim (y_n) = -\infty$, then $\lim (x_n) = -\infty$.
- 32. Let $F \subseteq \mathbb{R}$. Prove that the following are equivalent :
 - (a) F is a closed subset of \mathbb{R} .
 - (b) If $X = (x_n)$ is any convergent sequence of elements in F, then $\lim X = x$ belongs to F.
- 33. Prove that a subset of \mathbb{R} is closed if and only if it contains all of its cluster points.
- 34. Let z be a complex number. Prove that |1+z|=1+|z| if and only if z is real.
- 35. Find all roots of $8^{1/6}$ in rectangular co-ordinates.

 $(5 \times 9 = 45 \text{ marks})$

Section D

Answer any one question. The question carries 15 marks.

- 36. Prove that there exists a positive real number x such that $x^2 = 2$.
- 37. Let $X = (x_n)$ be a sequence of real numbers and let $x \in \mathbb{R}$. Prove that the following are equivalent:
 - (a) X converges to x.
 - (b) For every $\varepsilon > 0$, there exists a natural number K such that for all $n \ge K$ the terms x_n satisfy $|x_n x| < \varepsilon$.
 - (c) For every $\varepsilon > 0$, there exists a natural number K such that for all $n \ge K$ the terms x_n satisfy $x \varepsilon < x_n < x + \varepsilon$.
 - (d) For every ε -neighborhood $V_{\varepsilon}(x)$ of x, there exists a natural number K such that for all $n \ge K$ the terms x_n belong to $V_{\varepsilon}(x)$.
- 38. Prove that a subset of $\mathbb R$ is open if and only if it is the union of countably many disjoint open intervals in $\mathbb R$.

 $(1 \times 15 = 15 \text{ marks})$