D	90231	

(Pages: 3)

Nam	e	•••••	 •••••	•••••	•••••

Reg. No.....

with their colored records and their

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(CUCBCSS—UG)

Mathematics

MAT 5B 06-ABSTRACT ALGEBRA

Time: Three Hours

Maximum: 120 Marks

Section A

Answer all questions.

Each question carries 1 mark.

- 1. Define a Group.
- 2. Fill in the blanks: The units in the ring of integers \mathbb{Z} are ———.
- 3. Write the order of the permutation (1, 2) (198) in S_9 .
- 4. Give an example of a finite group of order 4 which is not cyclic.
- 5. Calculate the remainder obtained when 45⁷² is divided by 73.
- 6. Find the inverse of the product (7, 5) (2, 5, 7) in S_7 . Is the inverse a cycle?
- 7. What is the characteristic of the ring $\langle \mathbb{Z}_9, +_9, \times_9 \rangle$.
- 8. Give an example for an integral domain which is not a field.
- 9. What is the necessary condition for a homomorphism ϕ from a group G to G' to be injective.
- 10. Define normal subgroup of a group.
- 11. What is the index of A_n in S_n .
- 12. Define a cyclic group and give an example.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer at least **eight** questions.

Each question carries 6 marks.

All questions can be attended.

Overall Ceiling 48.

13. Write criteria to be checked to determine whether a function $\Phi: S \to S'$ is an isomorphism of a binary structure $\langle S, * \rangle$ with $\langle S', *' \rangle$.

Turn over

- 14. Is \mathbb{Z}^+ a group under usual addition? Establish your claim.
- 15. Solve: $x^2 1 = 0$ in the field \mathbb{Z}_p .
- 16. Show that every field is an integral domain.
- 17. Find the multiplicative inverse of 53 in \mathbb{Z}_{57} .
- 18. Construct group table for the Klein group. What is the order of every element in this group?
- 19. Define kernel of a group homomorphism. Find the $\ker(\phi)$ for $\phi: \mathbb{R} \to \mathbb{R}$ defined by $\phi(x) = 0$ for all $x \in \mathbb{R}$.
- 20. Define a ring. Give an example of a non-commutative ring.
- 21. Define center of a group and show that center of the symmetric group S₃ is the trivial group.
- 22. In any ring R, show that a.0 = 0 = 0.a and a.(-b) = -(a.b) for all a, b in R.
- 23. Show that for any group, its identity element and inverse of any element are unique.
- 24. Evaluate the product of (2, 3) and (3, 5) in $\mathbb{Z}_5 \times \mathbb{Z}_9$.
- 25. Show that $a^2 b^2 = (a b)(a + b)$ in a ring R if and only if R is commutative.
- 26. Define factor group and give an example.

 $(8 \times 6 = 48 \text{ marks})$

Section C

Answer at least **five** questions. Each question carries 9 marks. All questions can be attended. Overall Ceiling 45.

- 27. Show that the binary structure $\langle \mathbb{R}, + \rangle$ with operation the usual addition is isomorphic to the structure $\langle \mathbb{R}^+, \rangle$ where . is the usual multiplication.
- 28. (a) State and prove Lagrange's theorem; and (b) Establish one of its corollary.
- 29. Show that the subset S of $M_n(\mathbb{R})$ consisting of all invertible $n \times n$ matrices under matrix multiplication is a group.
- 30. Show that every permutation σ of a finite set is a product of disjoint cycles.

- 31. Let G and G' be groups and let $\phi: G \to G'$ be one to one function such that $\phi(xy) = \phi(x)\Phi(y)$ for all $x, y \in G$. Then prove that $\phi[G]$ is a subgroup of G' and ϕ provides an isomorphism of G with $\Phi[G]$.
- 32. Show that subgroup a cyclic group is cyclic.
- 33. Show that M is a maximal normal subgroup of G if and only if G/M is simple.
- 34. Show that the cancellation law in a ring R holds if and only if it has no zero divisors.
- 35. Find all solutions of the congruence $12x \equiv 27 \pmod{18}$.

 $(5 \times 9 = 45 \text{ marks})$

Section D

Answer any **one** question.

The question carries 15 marks.

- 36. (a) Show that $|\langle a^s \rangle| = |\langle a^t \rangle|$ if and only if g.c.d (n, s) = g.c.d (n, t) where $n = |\langle a \rangle|$.
 - (b) Show that the only subgroups of $\mathbb Z$ are the form $n \mathbb Z$ for $n \in \mathbb Z$.
- 37. State Cayley's theorem and give the proof in detail.
- 38. (a) Show that any two fields of quotients of an integral domain are isomorphic.
 - (b) Prove or disprove: Factor group of a cyclic group is cyclic.

 $(1 \times 15 = 15 \text{ marks})$