D	7	0	9	R	5
	•	v	•	•	•

(Pages: 2)

Name			
Por No			

THIRD SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION NOVEMBER 2019

Physics

PHY 3C 10-NUCLEAR AND PARTICLE PHYSICS

(2017 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions.

Each question carries 1 weightage.

- 1. What are the limits on the phase shifts for an elastic scattering and a nuclear reaction process?
- 2. What are singlet and triplet potentials?
- 3. Express the Gell-mann-Nishijima formula.
- 4. Explain the origin of stellar energy.
- 5. What are baryon and lepton conservation laws?
- Give the Gamow Teller selection rules for beta decay.
- How does binding energy of the odd-odd differ from the even-even nuclei.
- 8. What is the principle of Ionization chamber?
- 9. What are the assumptions on which shell model is based?
- 10. What is Solar Fusion?
- 11. Explain the concept of charge conjugation.
- 12. What do you mean by pair production and annihilation of matter?

 $(12 \times 1 = 12 \text{ weightage})$

Section B

Answer any two questions.

Each question carries 6 weightage.

- With necessary theory explain in detail the low energy n-p scattering and obtain the expression for cross-section.
- Give the main assumptions of liquid drop model of the nucleus. Obtain the expression for the binding energy of a nucleus based on liquid drop model. State the semi-empirical formula of Weizacker.

Turn over

- 15. Give an account of:
 - (i) Semiconductor detector.
 - (ii) Discuss the working of a scintillation detector.
- 16 What are Quarks? Outline the basic properties of quarks. Explain the quark model of baryons.

 $(2 \times 6 = 12 \text{ weightage})$

Section C

Answer any four questions.

Each question carries 3 weightage.

- 17. Some nuclear reactions involving elementary particles is given below. Among them which reaction are possible?
 - (i) $\pi^+ + n \to K^0 + K^+$.
 - (ii) $\overline{v}_{\epsilon} + p \rightarrow n + e^{+}$.
 - (iii) $\pi^+ + \pi \rightarrow \Lambda^0 + K^+$.
- 18. It is required to operate a proportional counter with a maximum radial field of 10⁶ Vm⁻¹. What is the applied voltage required if the radii of the wire and tube are 0.01 cm and 1 cm respectively
- A radioactive substance has a half life period of 30 days. Calculate the time taken for ³/₄ original numbers of atoms to disintegrate
- 20. Calculate the binding energy and average binding energy per nucleon of $_{15}P^{31}$ of mass $_{15}P^{31} = 30.9737634$.
- The activity of certain radio nuclide decreases to 15% of its original value in 10 days. Find its half life.
- 22. Show that for a most stable isobar of a nucleus having odd mass number A , the atomic number Z

Z is given by, $\left[\frac{A}{0.015A^{\frac{2}{3}}+2}\right]$ the constants in the semiempirical mass formula $a_3=0.58$ MeV, $a_4=19.3$ MeV.

 $(4 \times 3 = 12 \text{ weightage})$